20 research outputs found

    Double Semion Phase in an Exactly Solvable Quantum Dimer Model on the Kagome Lattice

    Full text link
    Quantum dimer models typically arise in various low energy theories like those of frustrated antiferromagnets. We introduce a quantum dimer model on the kagome lattice which stabilizes an alternative Z2\mathbb{Z}_2 topological order, namely the so-called "double semion" order. For a particular set of parameters, the model is exactly solvable, allowing us to access the ground state as well as the excited states. We show that the double semion phase is stable over a wide range of parameters using numerical exact diagonalization. Furthermore, we propose a simple microscopic spin Hamiltonian for which the low-energy physics is described by the derived quantum dimer model.Comment: 7 pages, 5 figure

    A Non-Commuting Stabilizer Formalism

    Full text link
    We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group αI,X,S\langle \alpha I, X,S\rangle, where α=eiπ/4\alpha=e^{i\pi/4} and S=diag(1,i)S=\operatorname{diag}(1,i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examples of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.Comment: 52 page

    Explicit tensor network representation for the ground states of string-net models

    Get PDF
    The structure of string-net lattice models, relevant as examples of topological phases, leads to a remarkably simple way of expressing their ground states as a tensor network constructed from the basic data of the underlying tensor categories. The construction highlights the importance of the fat lattice to understand these models.Comment: 5 pages, pdf figure

    A hierarchy of topological tensor network states

    Full text link
    We present a hierarchy of quantum many-body states among which many examples of topological order can be identified by construction. We define these states in terms of a general, basis-independent framework of tensor networks based on the algebraic setting of finite-dimensional Hopf C*-algebras. At the top of the hierarchy we identify ground states of new topological lattice models extending Kitaev's quantum double models [26]. For these states we exhibit the mechanism responsible for their non-zero topological entanglement entropy by constructing a renormalization group flow. Furthermore it is shown that those states of the hierarchy associated with Kitaev's original quantum double models are related to each other by the condensation of topological charges. We conjecture that charge condensation is the physical mechanism underlying the hierarchy in general.Comment: 61 page

    Mapping Kitaev's quantum double lattice models to Levin and Wen's string-net models

    Full text link
    We exhibit a mapping identifying Kitaev's quantum double lattice models explicitly as a subclass of Levin and Wen's string net models via a completion of the local Hilbert spaces with auxiliary degrees of freedom. This identification allows to carry over to these string net models the representation-theoretic classification of the excitations in quantum double models, as well as define them in arbitrary lattices, and provides an illustration of the abstract notion of Morita equivalence. The possibility of generalising the map to broader classes of string nets is considered.Comment: 8 pages, 6 eps figures; v2: matches published versio

    A Procedure for Sharper and Faster Characterization

    Get PDF
    Topological order in two-dimensional (2D) quantum matter can be determined by the topological contribution to the entanglement Rényi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here, we show how topological phase transitions in 2D systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entanglement of blocks. Specifically, we present an efficient tensor network algorithm based on projected entangled pair states to compute this quantity for a torus partitioned into cylinders and then use this method to find sharp evidence of topological phase transitions in 2D systems with a string-tension perturbation. When compared to tensor network methods for Rényi entropies, our approach produces almost perfect accuracies close to criticality and, additionally, is orders of magnitude faster. The method can be adapted to deal with any topological state of the system, including minimally entangled ground states. It also allows us to extract the critical exponent of the correlation length and shows that there is no continuous entanglement loss along renormalization group flows in topological phases

    Protected gates for topological quantum field theories

    Get PDF
    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators --- for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically-local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons; in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.Comment: 50 pages, many figures, v3: updated to match published versio

    Electric-magnetic duality of lattice systems with topological order

    Full text link
    We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev's quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen's string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.Comment: v2: material added, 24 pages, 7 figure
    corecore